14-16 years

Key terms accessible glossary: structure and bonding

Downloaded from rsc.li/444TbFh, teacher notes also available

Contents For how to use, metacognitive prompts, ideas for support and challenge, and linked resources, visit: rsc.li/444TbFh

General

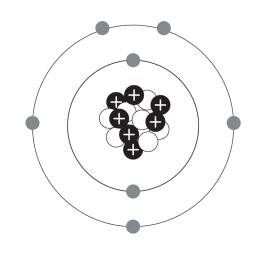
Atom	4
Chemical bond	5
Compound	6
Conductor of electricity	7
Dot and cross diagram	8
Electron	9
Electron shells/energy levels	10
Element	11
Giant lattice	.,12
Inelastic	13
Regular lattice	14

Covalent structure and bond	ing
Covalent bond	16
Diatomic	17
Intermolecular forces	18
Intramolecular forces	19
Macromolecule	20
Molecule	21

Contents continued

Ionic structure and bonding

Anion22	
Brittle23	
lon24	
Ionic bond25	
Polyatomic ion26)


Metallic structure and bonding

Alloy2	7
Cation28	3
Delocalised electron29	9

Ductile	30
Electrostatic force of attraction	31
Malleable	32
Metal	33
Metallic bond	34
Thermal conductivity	35

Structure and bonding of car	bon
Allotropes	36
Tetrahedral	37

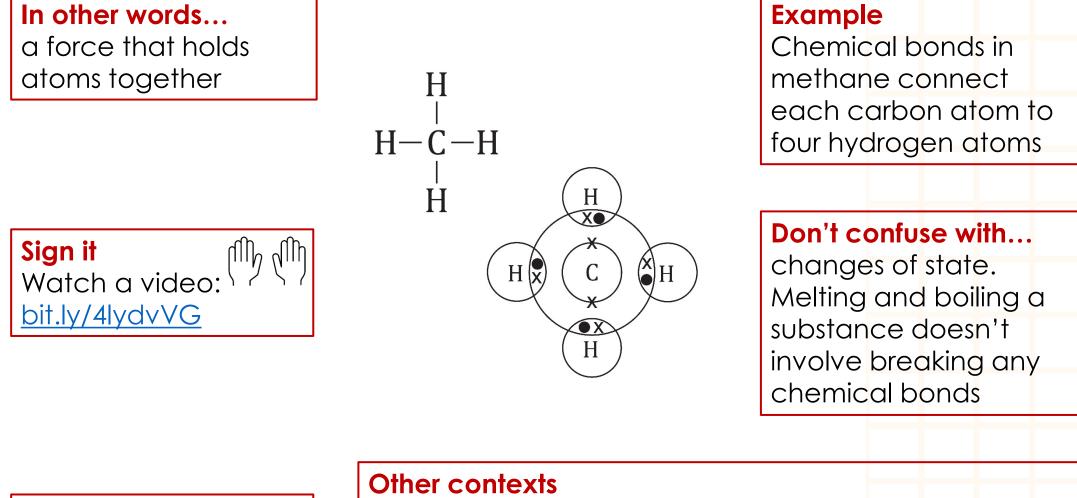
Atom the smallest possible particle of an element; atoms are made up of protons, neutrons and electrons

Sign it Watch a video: bit.ly/3G7XpSi

Example

One individual atom of nitrogen is the smallest form of nitrogen that can exist

Don't confuse with...


ions. Atoms have an equal number of protons and electrons. Atoms can form ions when they lose or gain electrons

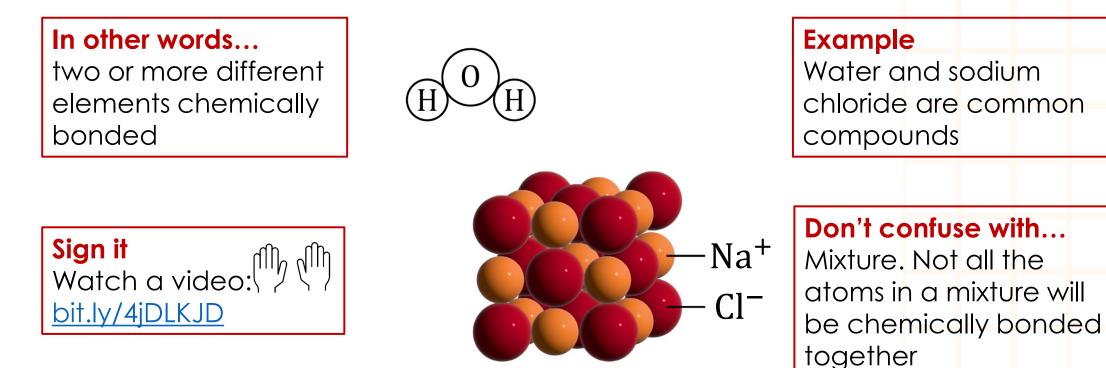
Other contexts

Say it A-tuhm In physics you will study similar topics about atomic structure and particles

Chemical bond

a strong electrostatic force of attraction holding atoms together

Say it Kem-ih-kuhl bond


The type of bonding present in a substance can be named as either covalent, metallic or ionic bonding

Say it

Com-pound

a pure substance made of two or more different elements whose atoms are joined by chemical bonds; the atoms are in a fixed ratio

Other contexts

In biology you will study the importance of glucose, carbon dioxide and many other compounds

Conductor of electricity a substance that allows charged particles to move through it easily

In other words... a material that conducts electricity

Say it

Con-duk-tor ov ehlek-trih-sih-tee

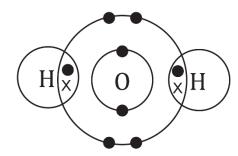
Other contexts

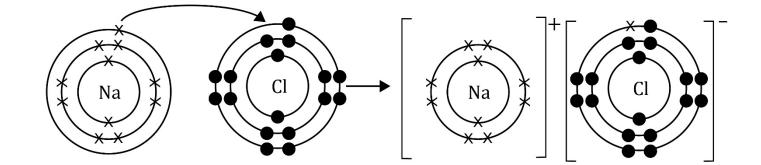
You will discuss conductors of electricity in physics when learning about circuits and in chemistry when learning about electrolysis

Example

Metals like copper and gold are good conductors of electricity

Don't confuse with...


thermal conductor. The explanations for why a substance is a good electrical conductor vs. a conductor of thermal energy are different

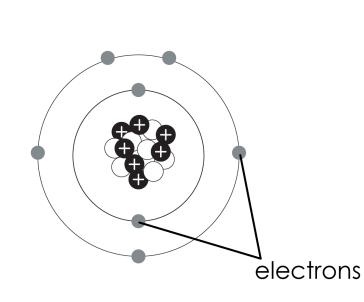

Dot and cross diagram

used to show how electrons from the outer shells/energy levels of atoms are shared or transferred when atoms form molecules or ions

In other words...

a diagram to represent covalent and ionic bonding

Don't confuse with... the full electron configuration of an individual atom. It is common in dot and cross diagrams to only represent the outer shell electrons of the atoms or ions involved


Electron

a negatively charged subatomic particle with very little mass found in the electron shells/energy levels of atoms

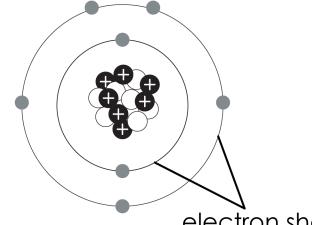
In other words... negative subatomic particles found within atoms

Example

Nitrogen atoms will contain seven electrons because the atomic number of nitrogen is 7

Don't confuse with...

Ion. Electrons are found within atoms and ions


Other contexts

In physics you will study electrons in the context of electrical circuits

Electron shell (or energy level)

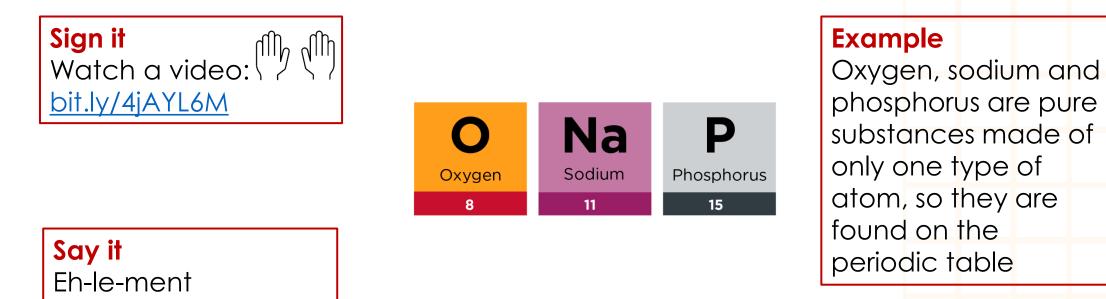
a region surrounding the nucleus of an atom where electrons are found; each level has a maximum number of electrons it can hold

In other words... where electrons are found in an atom

electron shells

Example

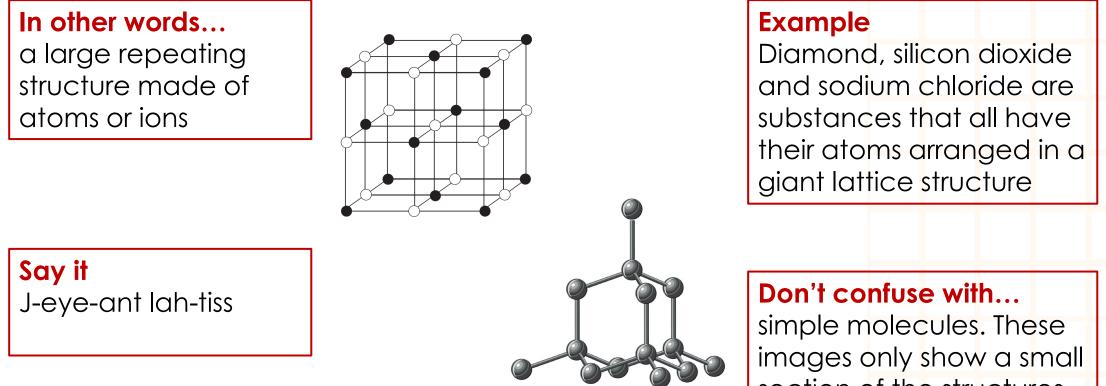
An atom of nitrogen has two electron shells, so it is located in the second period of the periodic table


Don't confuse with...

delocalised electrons. They are not in the electron shells of any particular atom. Unless they are delocalised, electrons occupy space in an electron shell/energy level

Say it Eh-lek-tron sh-ells

a pure substance made of only one type of atom


Other contexts

In biology you will study how oxygen, carbon, nitrogen and several other elements are necessary for life Don't confuse with... atoms, which are the

individual particles that make up an element or compound

Giant lattice

the regular arrangement of atoms or ions that form extended structures

Other contexts

In physics, the particles of a solid are often represented as a giant lattice structure

simple molecules. These images only show a small section of the structures. These sections are repeated many times to make giant lattices

Inelastic

is not flexible

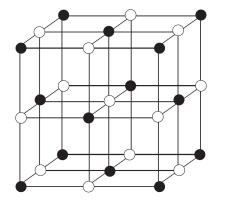
In other words... will not stretch or bend

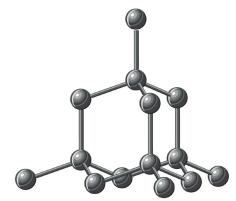
Say it In-el-as-tik

Break it down 'In' means not

Example

Metal drinks cans and glass bottles are common inelastic materials


Other contexts


An inelastic object changes shape permanently when a force is applied to it. In physics you will investigate the properties of elastic and inelastic objects

Regular lattice

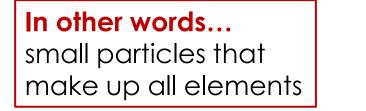
an arrangement of repeating atoms or ions that form a 3D structure

Example

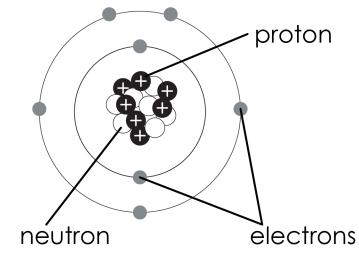
Sodium chloride and diamond are substances that you will study that have a regular lattice structure

Don't confuse with... simple molecules.

Other contexts


Reh-gyu-lar lah-tiss

Say it


In physics you will learn about the arrangement of particles in solids

Subatomic particle

a particle smaller than an atom

Say it Sub-a-tom-ik par-tihkuhl

Example

Protons, neutrons and electrons are subatomic particles

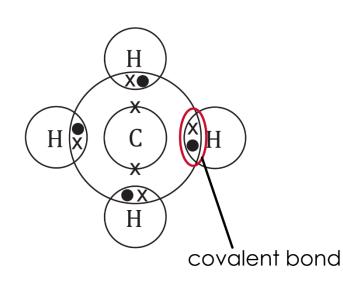
Don't confuse with...

atoms. Subatomic particles are what atoms are made from. They are found within the atom, not outside it

Break it down 'Sub' means lower

Other contexts

In physics you will encounter the same three subatomic particles that we learn about in chemistry: protons, neutrons and electrons


Covalent bond

a type of bond formed by atoms sharing one or more pairs of electrons

In other words...

a way for atoms to bond together by sharing pairs of electrons

Sign it Watch a video: bit.ly/44pZVxh

Example

The atoms in methane molecules are held together by covalent bonds

Don't confuse with...

intermolecular forces. There are covalent bonds within small molecules but not between them

Say it Co-vay-lent

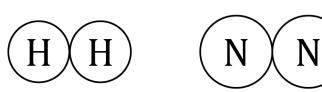
Break it down

'Co-' means together with

Other contexts

In biology the digestive enzymes amylase, protease and lipase work by breaking the covalent bonds in certain food molecules

Diatomic


when a molecule is composed of two atoms

In other words... a bonded pair of atoms

Sign it Watch a video:

Say it D-eye-a-tom-ik

Break it down 'Di-' means two

hydrogen molecule nitrogen molecule

 N_2

Other contexts

 H_2

In biology you will use the formula for diatomic oxygen, 0₂, in symbol equations

Example

Hydrogen (H_2) and nitrogen (N_2) are diatomic molecules

Don't confuse with...

compound; a diatomic molecule has two atoms, but they don't need to be different atoms. So, a diatomic molecule can be an element or a compound

Intermolecular forces

the relatively weak attractive and repulsive forces between molecules

Η

Η

Η

intermólecular

force

Say it In-tur-mol-leh-kyu-lar for-sez

Break it down 'Inter' means between or among

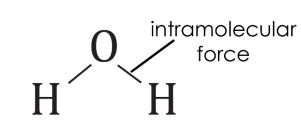
Other contexts

In physics you may discuss intermolecular forces when learning about the particle model

Example

The water molecules in ice are held together by attractive forces between the molecules

Don't confuse with...


chemical bonds. No covalent bonds are broken when substances made of small covalent molecules undergo melting or boiling – it is the intermolecular forces that are overcome

Intramolecular forces

the attractive and repulsive forces within a molecule

In other words...

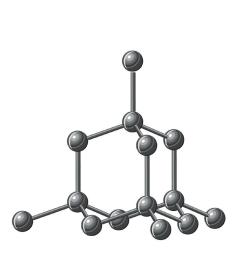
the forces that keep atoms held together within a molecule

Example

Covalent, ionic and metallic bonds are examples of intramolecular forces of attraction

Say it In-tra-mol-leh-kyu-lar for-sez

H H force


Break it down 'Intra-' means inside or within

Don't confuse with...

intermolecular forces. Molecules can have intramolecular and intermolecular forces, not just one or the other

Macromolecule a very large molecule

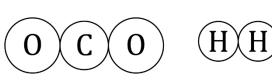
Say it Mac-ro-mol-eh-kyul

Example

A diamond is a macromolecule - one giant molecule made up of covalently bonded carbon atoms

Don't confuse with... a lattice.

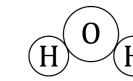
Break it down 'Macro-' means large


Similar words

The macromolecules silicon dioxide and diamond can be described as giant covalent structures

Molecule

two or more atoms connected by chemical bonds



carbon dioxide molecule

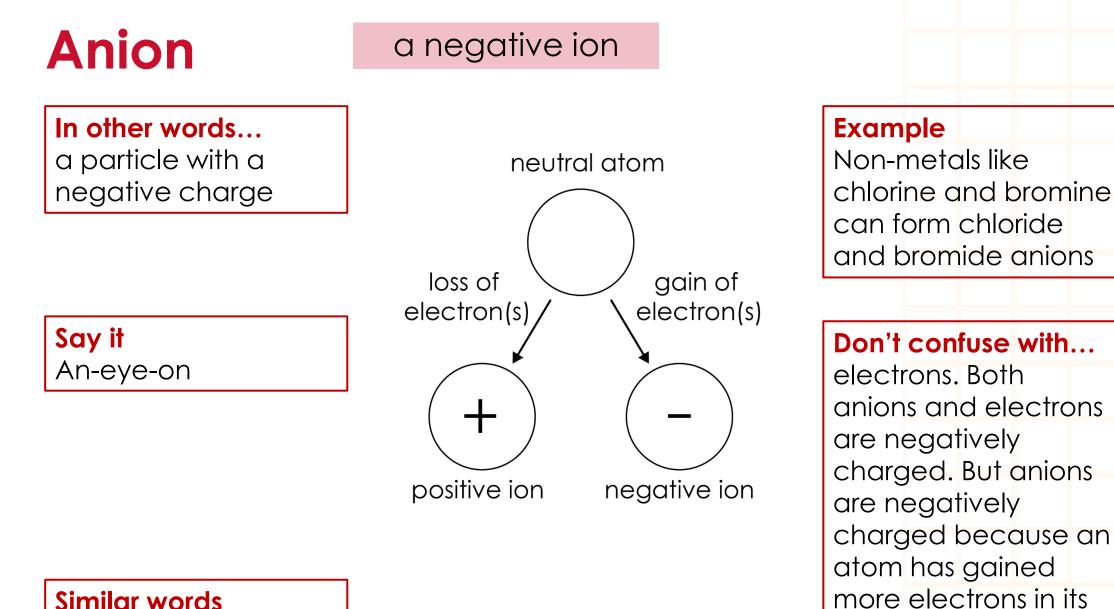
Say it Mol-eh-kyul

nitrogen molecule water molecule

Similar words

Molecules of gases and liquids could also be described as gas and liquid particles

Example


Carbon dioxide (CO_2) , water (H_2O) and all other compounds are molecules

Don't confuse with...

elements and compounds. A molecule can be either an element or a compound

Other contexts

In biology you will study many different molecules found within living organisms, such as glucose and carbon dioxide

outer shell

Similar words Negative ion

Brittle

something that cracks or breaks when force is applied to it

In other words... objects that will break, not bend or stretch

Sign it Watch a video: bit.ly/3RfV1eN

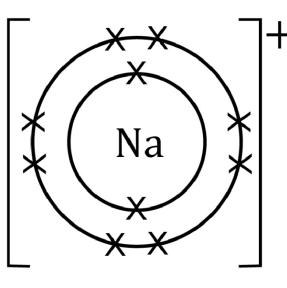
Example

A rock will crack when a strong enough force is applied to it because rock is brittle

Don't confuse with... fragile (easy to break). Not all brittle objects are fragile

Say it Brit-uhl

Similar words Inelastic


a charged particle formed when one or more electrons are lost or gained from an atom or molecule

In other words...

a particle with a positive or negative charge

Say it Eye-on

Similar words

Cations are ions with a positive charge and anions are ions with a negative charge

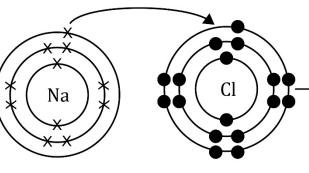
Example

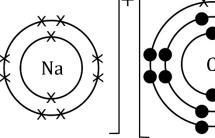
When a sodium atom loses an electron, it becomes a positively charged ion

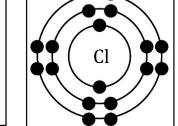
Don't confuse with... protons (positive) or

electrons (negative)

Other contexts


In physics you may discuss ions when learning about electricity


lonic bond


In other words...

the bond between a metal and a non-metal

an electrostatic force of attraction between oppositely charged ions in a regular lattice that forms between a metal and a non-metal

Say it Eye-on-ik bond

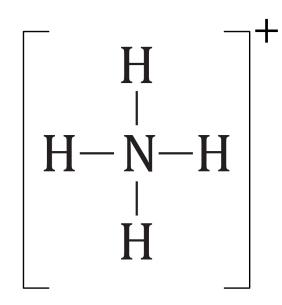
Don't confuse with...

diatomic molecule. Ionic bonds will not always form in a 1:1 ratio of metal to nonmetal ions. For example, MgCl₂ has two Cl^- chloride ions for every Mg^{2+} magnesium ion

Example

Sodium chloride NaCl (table salt) is a compound held together by ionic bonds. If you crush a large grain of salt, you are breaking the ionic bonds between the sodium and chloride ions

Polyatomic ion


a charged particle made of two or more atoms joined together

In other words...

two or more atoms bonded together to form a molecule that has an overall positive or negative charge

Say it Polly-a-tom-ik eye-on

Break it down 'Poly-' means many

Other contexts

In biology nitrate and phosphate ions are polyatomic ions important for plant nutrition

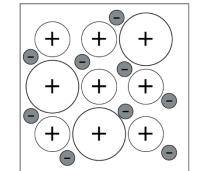
Example

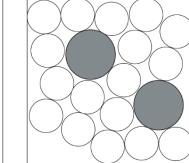
OH⁻ (hydroxide) and NH₄⁺ (ammonium) are polyatomic ions that you will frequently encounter in chemistry

Don't confuse with...

ionic compound. Ionic compounds are overall neutral so there is no charge shown in the formula. A polyatomic ion within the compound has a charge which always needs to be shown

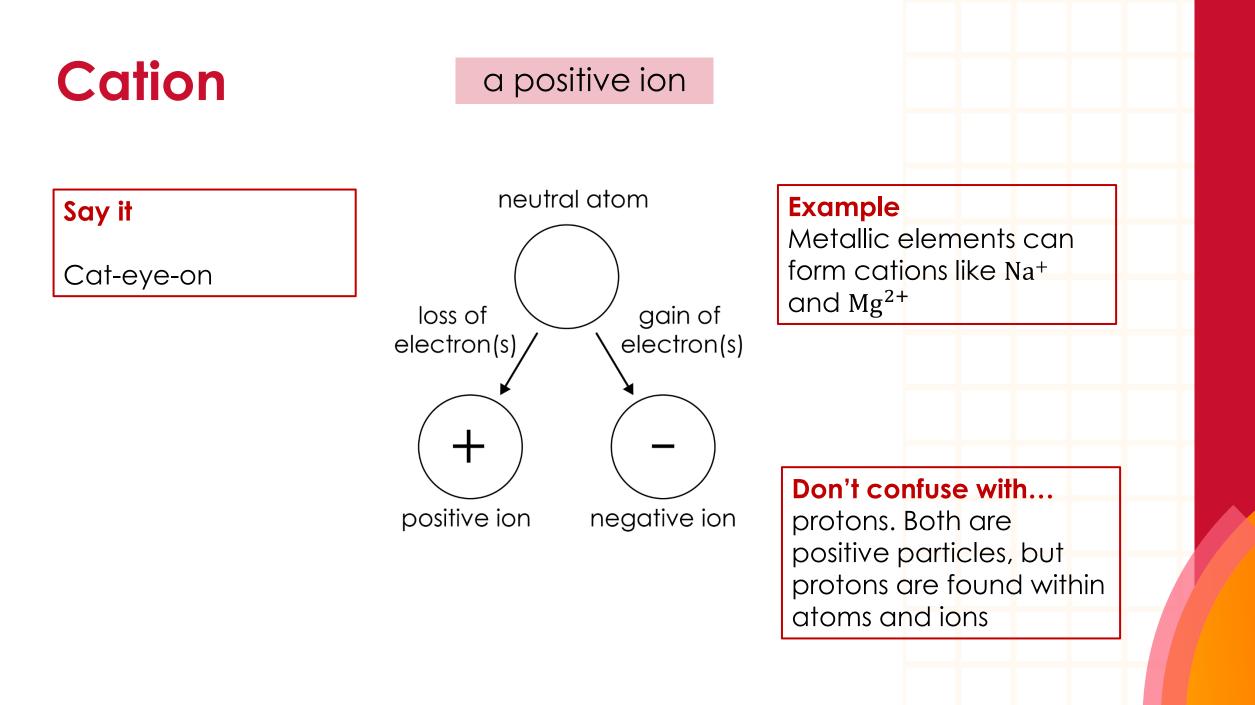
Say it


Ah-loy


a mixture of two or more elements at least one of which is a metal, where the resulting mixture has metallic properties

In other words...

a metal element mixed with another element to improve the properties of the metal, such as making it harder

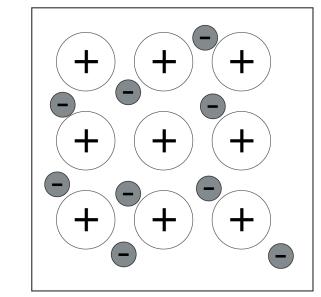


Example

Bronze is an alloy of the two metals copper and tin

Don't confuse with...

ionic compounds, even though alloys may contain a nonmetallic element mixed with the metal


Delocalised electron

an electron in a molecule or structure that is not associated with any particular atom, ion, or covalent bond and which is free to move

In other words...

electrons that are free to move throughout a structure because they are not bound to one particular atom or ion

Say it Dee-lo-cul-eyes-d ehlek-tron

Similar words Free electron

Example

Metals are good electrical conductors because they have delocalised electrons

Don't confuse with...

electrons in a metal. Graphite, an allotrope of carbon, also has delocalised electrons

Other contexts

In physics delocalised electrons flow through a circuit to produce a current

Ductile

can be drawn out into wires

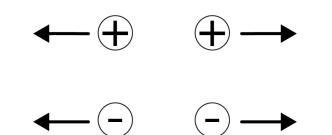
In other words...

Say it

Duk-tah-yul

a material that can be stretched or drawn out into thin wires without breaking

Example


Copper is used to make wires in electrical circuits because it is ductile

Electrostatic force of attraction

a force of attraction between particles with opposite charges

In other words...

positive and negative particles will attract each other

Example

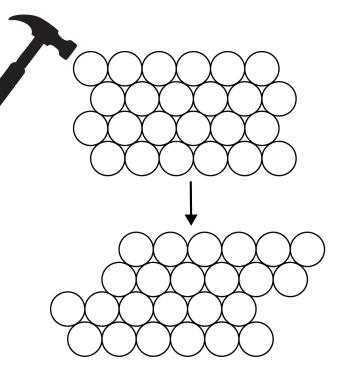
There is an electrostatic force of attraction between positively charged protons and negatively charged electrons

Say it Eh-lek-tro-stah-tik for-ss ov at-rak-shuhn

Other contexts

In physics you will study electrostatics during the electricity topic

Don't confuse with...

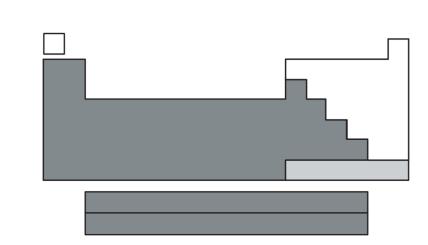

chemical bonding. All types of bonding involve an electrostatic force of attraction, but this force is also what causes protons and electrons to attract within individual atoms

can be hammered or bent into shape

Say it

Malleable

Mah-lee-ah-buhl


Example

Metals can be used for the bodywork of vehicles such as cars and planes because metals can be easily shaped – they are malleable

Metal an element that is shiny when cut, malleable and conducts electricity well; metals are found on the left and middle of the periodic table and tend to lose electrons to form positive ions

In other words...

elements which can be bent into shape and conduct electricity. Most are shiny solids at room temperature

Sign it Watch a video:

Say it Met-uhl

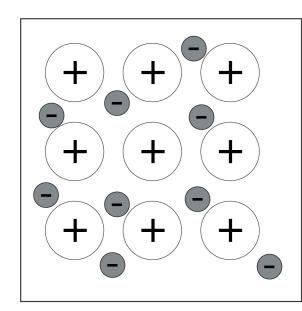
Other contexts

In physics you will study the magnetic metals iron, nickel and cobalt

Example

Iron, aluminium and copper are metals commonly used to manufacture useful products

Don't confuse with...


metallic bonding. Pure metals will have metallic bonding, but metals can form ionic bonds with nonmetals

Metallic bond

an electrostatic force of attraction between delocalised electrons and the positive ions in a regular lattice

In other words...

a type of bonding between metal atoms when the outer shell electrons become delocalised but remain attracted to the positive metal ions that have formed

Example

'Tin foil' (a very thin sheet of aluminium) has metallic bonds, so when you tear the foil you are actually breaking the metallic bonds

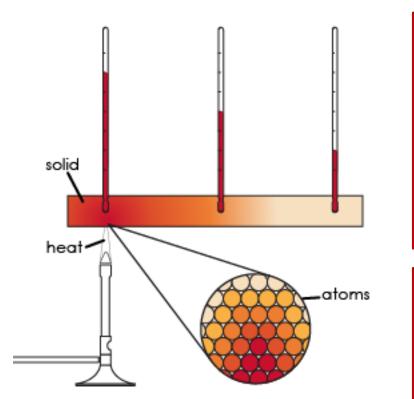
Don't confuse with...

ionic bonds. Only the positive metal ions are in a fixed position in a metallic bond, the delocalised electrons can move freely through the structure

Say it Met-ah-lik bond

Thermal conductivity

In other words...


substances with a high thermal conductivity are good at transferring heat

Say it Th-ur-mul con-duk-tivih-tee

Similar words

Thermal conductors can also be described as conductors of heat

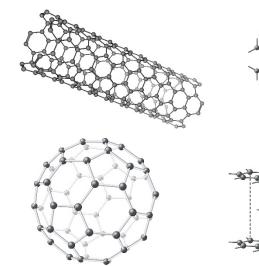
a measure of how easily a substance allows heat to move through it

Example

Most metals are good thermal conductors, so they are used in applications such as saucepans and radiators

Don't confuse with...

electrical conductivity. The explanations for why a substance is a conductor of electricity or conductor of thermal energy will be different


Allotropes

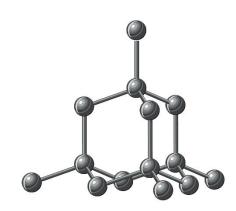
different forms of the same element in the same physical state; for example, allotropes of carbon are diamond, graphite, graphene and fullerenes

In other words...

different forms of the same element where the atoms are arranged in different ways, giving each allotrope different properties

Say it Ah-lo-troh-ps

Example


Diamond and graphite are two allotropes of carbon

Don't confuse with... isotope. Allotropes are described in terms of their structure and bonding, not the number of subatomic particles within the atomic nucleus

Tetrahedral

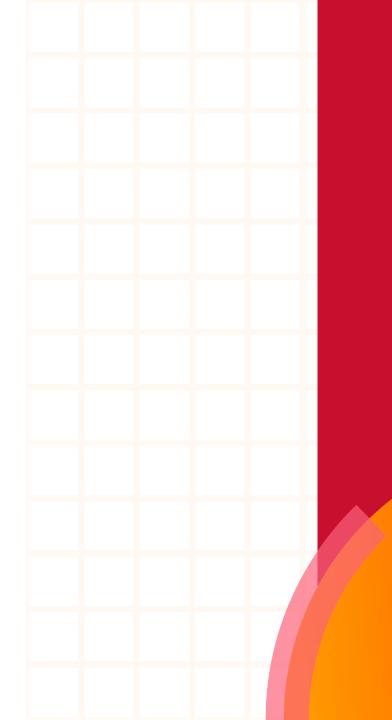
molecules and structures that have one atom in the centre and four atoms at the corners of a triangular pyramid

Say it Teh-trah-heed-rahl

Example

Carbon atoms are arranged in a tetrahedral structure within a diamond molecule

Break it down 'Tetra-' means four


Don't confuse with...

diamond. It does have a tetrahedral structure, but so do many other molecules. Silicon is another macromolecule with a tetrahedral structure and some small molecules like methane (CH₄) also have a tetrahedral shape

Acknowledgements

Images on slide 7, 13, 23 and 30 are © Shutterstock

SSC BSL Glossaries of Curriculum Terms (https://www.ssc.education.ed.ac.uk/BSL/)

